&) LTIMindtree

Redefining Retail &
Consumer Commerce:

The Shift from Monoliths to Composable Architecture




&p LTIMindtree

Table of Contents

Executive Summary 03
Introduction 03
Challenges of monolith infrastructures for B2B commerce growth 05
Advantages of composable commerce for B2B 05
Navigating the risks and challenges in B2B commerce digital transformation 06

Steps for digital transformation from monoliths to composable
commerce for B2B 07

1. Identify foundation elements about products, tools,

and high level of architecture. 0y
2. Planning 08
3. Execution 08
Approaches for incremental decomposition 09
Switch-based migration pattern 10
Data migration and management 11
1. Initial data migration 11
2. Data synchronization 12
3. Saga pattern and compensating transactions 12
DevSecOps and migration of DevOps tasks strategy 12
Conclusion 14
Citations 14

©2025 LfIMindtree. All Rights Reserved.



&p LTIMindtree

Executive Summary

The whitepaper underscores the critical need to transition from monolithic to composable
commerce architecture in B2B commerce, especially within the retail and consumer business sectors.
Monolithic systems stifle scalability and agility, making it challenging to keep pace with technological
advancements. In contrast, composable commerce empowers businesses to create tailored

platforms with independent components, enhancing flexibility and enabling swift updates.

This transition is driven by the necessity for flexibility, scalability, and innovation to meet evolving
customer demands. B2B models grapple with complex workflows, diverse customer segments, and
integration with various systems. The whitepaper outlines a three-phase approach for transitioning,
focusing on foundational elements and incremental migration strategies. Effective data migration
and synchronization between legacy and new systems are crucial. Moreover, integrating DevSecOps
and cloud architecture is vital for optimizing the total cost of ownership and ensuring security and

resilience in the new composable commerce environment.

Introduction

Business-to-business (B2B) commerce is rapidly growing due to the need for constant innovation
and quick delivery of new features. Unlike business-to-consumer (B2C) commerce, B2B platforms
are complex as they integrate multiple organizations' business processes into a seamless workflow.
Organizations in B2B distribution are leveraging collaborative commerce to streamline information
sharing among customers, suppliers, and manufacturers. Strategies like just-in-time (JIT),
make-to-order (MTO), and build-to-order (BTO) help optimize inventory and reduce costs. B2B
distribution must handle bulk procurement, demand fluctuations, contractual obligations, and high

customer expectations regarding delivery times, product quality, and domain expertise.

The traditional monolithic IT infrastructures, which are built as a single, interconnected platform,
are known for their limited scalability, lack of agility, longer time-to-market, difficulty in introducing
new functionalities, complexity implanting technology updates, and application outages, among
others. Itis challenging for businesses to meet the evolving customer demands and technological
advancements with monolithic commerce. Therefore, transitioning to a composable commerce
platform gives businesses a competitive edge as it offers greater flexibility, scalability, and
innovation. What is composable commerce? Composable commerce is a modern approach to
building a custom platform designed to meet specific business needs. It empowers businesses to
build an omnichannel platform with “composable components” that can be developed, scaled, and

updated independently, making the platform agile and flexible.

©2025 LTIMindtree. All Rights Reserved. 3



&p LTIMindtree

Seamless shopping experiences are crucial in the retail and consumer industry. To enable seamless
shopping experiences, businesses need a robust B2B commerce platform to handle complex supply
chain operations, manage large data volumes, and deliver personalized customer experiences.

While there are many similarities between B2B and B2C models, there are some fundamental
differences in customer models, product features, and workflows in B2B models. B2B commerce
platforms must handle complex workflows, diverse customer segments, and integration with various
systems. Unlike B2C, where the focus is on individual consumers, B2B involves multiple stakeholders,
bulk orders, and long-term contracts. This complexity requires a robust and flexible architecture to

meet the unique demands of B2B commerce, particularly in the Retail and Consumer business sectors.

While Both B2B and B2C follow a standardized approach for order capture, as illustrated below but

Profile and
preferences

Order history

Product
discovery

*Search for *Add items *Shipping *Orders *Set default
products *Modify or address = Returns address and
remove «Shipping payment
items options *Change
*Payment password or
sorder email
submission

Figure 1: B2B and B2C standardized approach for order capture

B2B commerce model will have typically these core features

1. Customers: Organizations can register as customers, enabling multiple employees to access the B2B

commerce portal and place orders on their behalf.

2. Contracts: Customers receive contracted prices through the portal and can leverage features like

bulk order discounts and item restrictions.

3. Invoicing: Order payment is decoupled from the order process with this module.

—
Customer
~~
—~ —~ —~ —~ —~
Contact Address Contracts Invoicing Punchout
~— ~— ~— ~— ~—
L~
Preference
~—
L~
Role
~—

©2025 LTIMindtree. All Rights Reserved. 4



&p LTIMindtree

Challenges of monolith infrastructures
for B2B commerce growth

In the early 2000s, organizations quickly built ecommerce storefronts, followed by B2B commerce for
agility and convenience of the business . Initially, tightly coupled architectures with ERP systems
posed challenges like heavy customizations and complexity. Three-tier architecture offered some
decoupling, but maintaining Ul and business logic independently was difficult. Service-oriented
architectures and middleware models laid the foundation for modern microservices, enabling
continuous adaptation. B2B commerce faces diverse customer segments, making feature rollout and
personalization challenging. B2B Distributors must address evolving customer needs and internal

cost optimizations, integrating efficient sales and logistics models with the e-commerce experience.

According to a McKinsey survey? e-commerce and account manager-based sales compete for the top
sales channel position in B2B. This necessitates a sophisticated and feature-rich B2B Commerce
experience. Omnichannel experience demands a decoupled design. Monoliths have tight coupling,
causing unexpected behavior and delivery contention. They have longer release cycles, making

scaling and maintenance challenging.

Advantages of composable commerce for B2B

To optimize B2B commerce, it's essential to use best-in-class products tailored to specific needs,
allowing for plug-and-play features without the limitations of generic e-commerce packages or complex
home-grown frameworks. Microservice abstraction helps remove product dependency, enabling rapid
value-add changes and preventing vendor lock-in, as highlighted by a Forbes study® . Composable
commerce also allows the integration of business-centric tools, enabling workflow-based solutions for
real-time demand shifts without relying on IT teams. Headless services, which distinguish business
services from user experience, facilitate rapid Ul changes and integration across different stacks in an
omnichannel scenario. This approach reduces total cost of ownership (TCO) by focusing on on-demand
scaling and allowing for rapid product exits if costs become prohibitive. Faster time to market is achieved
as teams focus on core competencies and small feature iterations, reducing delivery contention as long as

service contracts remain unchanged and sufficient regression tests are in place.

Scalability is enhanced through microservices, allowing parallel development and resource scaling on
demand. Calculating ROI for such transformation projects is complex, but the real benefit lies in setting up
an environment for rapid innovation and reduced time to market. This is achieved by deploying parallel

development teams and fast-tracking the innovation-feedback cycle.

©2025 LTIMindtree. All Rights Reserved. 5



&p LTIMindtree

Navigating the risks and challenges in B2B
commerce digital transformation

Digital transformation into composable commerce offers significant benefits when planned and

executed properly.

« Focus on agility, innovation, and scalability to ensure a successful transition without

delaying time to market.

« Assess your current architecture; if the modular monolith is mature and teams are

well-integrated, transitioning to microservices may not be necessary.

« If moving forward with a transformation, select products and tools based on clear

acceptance criteria and proof of concepts.

« Prioritize foundational elements during development to minimize risks Focus on agility

innovation, and scalability to ensure a successful transition without delaying time to market.

« Assess your current architecture; if the modular monolith is mature and teams are well-integrated,

transitioning to microservices may not be necessary.

« If moving forward with a transformation, select products and tools based on clear acceptance criteria

and thorough proof of concepts.

« Prioritize foundational elements during development to minimize risks and ensure a strong base

for future growth.

©2025 LTIMindtree. All Rights Reserved:
)




&p LTIMindtree

Steps for digital transformation from
monoliths to composable commerce
for B2B

There are several foundational elements that must be identified first. It is best to have a three-phase
approach to achieve the successful transformation from monoliths to composable commerce for B2B
platforms.

1.1dentify foundation elements about products, tools, and high level of architecture.

a) Products:

« Digital experience platform

+ Cloud platform and data storage

+ Search engines

« Commerce engine: Driven by headless systems like commerce tools, custom-built, or hybrid.
« Customer identity and access management (CIAM)

+ Frameworks for Ul and API

« APl gateway

b) Tools:

+ Source repository

« Artifact registry

+ Build and pipeline tools
+ Security scanners

« Code quality scanners

« Test automation tools

+ Agile PM tools

« Technical documentation tools

©2025 LTIMindtree. All Rights Reserved.




c)Architectural approaches and designs for cross-cutting concerns must be addressed to
ensure consistency. Focus on establishing uniform development standards and guidelines,
while documenting and aligning them with clearly defined architectural strategies.

Some of the strategies are:

» Content management

« UX, Ul,and SEO

+ APl service architecture

+ Caching and performance

» Identity management and access control
« Test automation

« Cloud architecture and dev-ops

2.Planning
There are two main approaches for migrating a monolith to microservices:

« Thefirstis building a new platform from scratch, but this waterfall approach may not be acceptable
due to long wait times.

+ The preferred approach is incremental migration, which decomposes the monolith. To avoid rework,
it's crucial to plan foundational and cross-cutting architecture elements like CIAM, Cloud, DXP, and
DevOps pipelines first. Functional features can then be sequenced for seamless production migration
with minimal impact.

3.Execution

During the planning phase, an agile organization structure with smaller scrum teams should be putin
place to achieve parallel development of functional features. Designs of individual features should be
covered here.

'{Q

©2025 LTIMindtree. All Rights Rese




&p LTIMindtree

Approaches for incremental
decomposition

Domain-driven design (DDD) is key for e-commerce architecture. In DDD, bounded contexts are related to
business functions with clear interfaces. For B2B, domains like catalog, cart & checkout, and Invoicing
convert to microservices. These are loosely coupled, reusable, and ensure autonomy and scalability.
Decomposing complex monoliths like B2B commerce platforms is challenging due to module
interdependencies. Bounded contexts help identify features for migration. A customer and

segment-based migration model ensures a universal experience and avoids data corruption.
The following patterns support the incremental migration of features:

1.Strangler fig pattern:
Using a proxy pattern, client requests can be redirected to either the old or new experience. The proxy
can be a server acting based on specific rules or a programmatically implemented wrapper over
existing APIs. Consider the search function in an e-commerce program that calls a search engine.

There are two scenarios:

a. Ifthe legacy application is based on SOA and has a search service calling the search engine, apply

the strangler pattern at the service layer:

i.Create a new search service following REST principles with a transformation layer to accept requests

in the old format, using APl Gateways or programming.

ii. Introduce a proxy layer to switch between old and new services based on an inbound identifier,
such as a customer ID cookie or A/B test cookie.

iii. Switch the legacy application to point to this proxy layer, requiring minimal changes.

b.If the legacy application lacks SOA and tightly couples Ul and Search Functions, apply the strangler
pattern at the Ul Layer:

i. Create a new search service and search Ul that integrates with the search engine.

ii. Introduce a proxy using an HTTP server/load balancer to redirect between legacy and modern

Ul-based on defined rules.

iii.Modify the legacy application for a transitional user experience, easing customer acceptance of

the new interface.

©2025 LTIMindtree. All Rights Reserved. 9



&p LTIMindtree

During transactional scenarios, synchronizing data between both systems becomes more challenging.

This will be covered in the data migration section.

2.Branch by abstraction Pattern: This pattern is used when the logic that has to be extracted is
too tightly coupled with business logic for other domains or Ul.

In the above scenario, if we still need to retain the legacy Ul but still calling the search service, we will

choose the branch by abstraction pattern.
a. Create an abstract layer for the search service interface for both old and new services.
b. Refactor the Ul code so it can call this new abstract search service interface.
c. Now, switches can be used to control the calls between legacy and new search services.

Ul as micro front ends: Similar to microservices, Ul must also be decomposed page by page. The micro
front-end model helps build individual pages and hook them into an existing web portal so that a
seamless user experience can be achieved. Each page or micro app can be independently developed

and deployed and loosely coupled with other pages.
3.Switch-based migration pattern

During incremental migration, components of the legacy system and transformed system may co-exist
and become part of a single-user story. Customers may move seamlessly between the legacy and new

systems. To facilitate this, a customer + feature-based switch combination is recommended.

The matrix below depicts how the switch pattern can work:

Search New system

Invoicing Legacy system

Table 1: Depicting switch pattern




Data migration and management

Data decomposition for monolith to microservice migration has two phases: Initial data migration and

data synchronization.
1. Initial data migration

Migrating B2B commerce data is more complex than B2C because of the tightly coupled
functionalities and the need for seamless interoperability across numerous features. To address this,

follow these steps:

1. Identify customers and features for migration. Some customers may use features on both legacy
and new systems during incremental migration. Build a modular data migration program to support

customer and feature-based data migration.
2. Prepare data transformation programs based on source and destination formats. For example:
* Customer data may flow into CIAM
* Previous and in-progress order data may flow into the OMS and order history database
+ Other B2B data may be stored in a relational or NoSQL database

3. Prepare validation programs to ensure all data is successfully transformed and inserted into
the new system.
Confidential data like passwords and credit cards should not be migrated to comply with international
regulations. For example, if we introduce a new CIAM system, we will provide customers with the option

to reset their passwords rather than decrypting and re-encrypting current passwords.

Figure 3: Typical data migration program

©2025 LTIMindtree. All Rights Reserved. il



&p LTIMindtree

2. Data synchronization

To support failover scenarios, synchronize data between the new and legacy systems using event-based
systems, database triggers, or messaging queues. Avoid exposing legacy features to migrated customers.
If necessary, enable two-way synchronization, which can cause issues like locking and data

inconsistency. Irreversible actions, such as moving to a new CIAM system, can block failover.
3. Saga pattern and compensating transactions

Microservices can call other microservices to retrieve or update information, with some services
aggregating multiple workflow steps for centralized state control. For example, a checkout service can
handle creating or selecting a shipping address, adding payment, and submitting a cart by invoking
relevant services. These are known as orchestrator services and implement the Saga pattern, which
coordinates data changes across multiple services. The orchestrator pattern uses a central coordinator,
while the choreography pattern relies on event triggers. To ensure data consistency and integrity during
failures, compensating transactions must be programmed for each service to roll back transactions to
the point of failure.

DevSecOps and migration of DevOps
tasks strategy

DevSecOps deals with the aspects of integrating and automating pre-release operations, code quality,

and security auditing with the development and testing life cycle of a product.

Release

Figure 4: Typical DevSecOps cycle

©2025 LTIMindtree. All Rights Reserved. i2



Cloud architecture is a key to optimizing the total cost of ownership. Some factors to be considered when

optimizing cloud architecture are:

Regions of operation and latency

Propensity towards completely cloud-native models or preference towards

cloud vendor-agnostic models

&p LTIMindtree

Alignment of products in composable architecture aligned to the same cloud provider

Security, high availability, and resilience

Build cloud-ready APIs using Docker/Kubernetes, ensuring they are stateless and session-free.

Start with lift-and-shift to VMs with containers, then move to Kubernetes, which is fully cloud-managed.

Invest in making applications that are cloud-native to save effort.

Choose a modern source control system with redundancy and pipeline automation.

Set up CI/CD pipelines for approval-based deployments integrated with a ticketing service.

Automate Swagger documentation, code quality scanners, SAST/DAST security scanners,
unit tests, and coverage analysis.

Leverage managed services for storage, sensitive data, configuration management,
and cloud-managed deployments.

Automate infrastructure creation using Terraform and implement security scanning

to identify vulnerabilities.

Figure 5: Migration of DevOps tasks

©2025 LTIMindtree. All Rights Reserved.

Pull libraries Code
SP ull COdg fr?ml ——|  from Artifact Modification || Pull Request
ource fontro Registry and Commit
. . . Third Party
Static Code Static Security o
Code Merge | — . = Vulnerability
Quality scan Scan scan
Create Deploy .
Container & || Container from Pug"Sh AP —| F Aggmaﬁi:l t
Store in registry Registry pecs unctional 1es
Automated Report
Perfqrg'rs'lfnce | Generation

13



&p LTIMindtree

Conclusion

Digital transformation of a B2B commerce application into composable commerce brings significant
benefits if planned and executed properly. Ensure the move is driven by agility, innovation, scalability,
and time to market. If your current modular monolith architecture is mature and teams are in synergy, a
transformation to microservices may not be necessary. However, if proceeding, select products and tools
based on acceptance criteria and proof of concepts. Optimize development by implementing
foundational elements first. Organizational transformation is also required, with teams adopting an agile
mindset for continuous improvement and innovation. Digital transformation in the retail industry is

crucial for seamless shopping experiences and enhanced customer engagement.

Citations

LE-Commerce 2000: The Year of Living Dangerously, Jon Weisman, eCommercetimes, December 29, 2000:

https.//www.ecommercetimes.com/story/e-commerce-2000-the-year-of-living-dangerously-6380.html

?Busting the five biggest B2B e-commerce myths, Manu Bangia, Liz Harrison, Candace Lun Plotkin, and
Kate Piwonski, McKinsey, January 26, 2022:
https.//www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/busting-the-five-biggest

-b2b-e-commerce-myths
*Outpace The Competition With Composable Commerce, Robert Harbols, Forbes, September 06, 2022:

https.//www.forbes.com/councils/forbesbusinesscouncil/2022/09/06/outpace-the-competition-with-compo

sable-commerce/

©2025 LTIMindtree. All Rights Reserved. 14



Authors

&p LTIMindtree

Visakh
Sankaranarayanan

Senior Principal - Architecture

Visakh has over 22 years of experience in digital and e-commerce programs, with deep expertise
in HCL Commerce and Commerce Tools. He specializes in B2C and B2B customizations as well as
B2B sales channel integrations.

Atish Roy
Senior Principal - Architecture

With over 17 years of experience, Atish specializes in digital and e-commerce programs, with
expertise in Commerce Tools, HCL Commerce, MACH architecture, cloud architecture,
DevSecOps, and CI/CD strategies, with a strong focus on the Google Cloud Platform.

Akshatha
Kamath

Principal Architect

With 16 years of experience in digital e-commerce for Retail CPG and Manufacturing, including
13 years at LTIMindtree, Akshatha specializes in e-commerce and Google Services.

Dr. Rajesh Singh
Associate Vice President, Retail CPG

Dr. Rajesh Singh, a Ph.D. graduate from the Indian Institute of Management, specializes in

Big Data and Finance. With over 26 years of experience, he has led Digital Transformation Programs
in Retail CPG, leveraging expertise in Digital Technologies, Cloud Computing, Al/ML/NLP, and

Data Science.

Abhishek
Kaushik

Principal Director, Retail and CPG Industry, LTIMindtree

Abhishek leads digital transformation strategic accounts at LTIMindtree, partnering with clients to
solve business challenges and drive growth across BSFI, Manufacturing, Retail, and CPG industries.

©2025 LTIMindtree. All Rights Reserved. 15



&7 LTIMindtree

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to
reimagine business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital
transformation partner to more than 700 clients, LTIMindtree brings extensive domain and technology expertise to help
drive superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered
by 86,000+ talented and entrepreneurial professionals across more than 40 countries, LTIMindtree — a Larsen & Toubro
Group company — solves the most complex business challenges and delivers transformation at scale. For more
information, please visit https://www.ltimindtree.com/.



