&p LTIMindtree

Accelerate to Mule 4:
Considerations for Migration
while upgrading from MuleSoft 3

Table of Contents

=

Introduction

. Why do you need to migrate to Mule 4?

2.1 Exception handling
2.2 Simplified Event Processing and Messaging
2.3 Self-tuning capabilities

3. When to Migrate from Mule 3 to 47

Methodologies for Mule 3 to Mule 4 Migration

4.1 Rationalization of existing Mule 3 implementation
4.2 Choosing the right migration options

4.3 Security

. Conducting the Mule 3 to Mule 4 Migration Process

5.1 Re-architecture

5.2 As-is Migration

5.3 Leverage Testing and DevOps framework
Conclusion

References

About the Authors

0 N 3N o oo u1 i~ W

N e
(G, I, BT, T "N UV NCRE NSRS

1. Introduction

Integration has become an important ingredient in the success of any organization, as it increases the
sprawl of applications, infrastructure, and the partner ecosystem. Businesses with the right integration
strategies have raised the bar with lower operational costs, faster project delivery, and smart revenue
streams. They are quickly leaving more traditional players far behind. An integration strategy allows organi-
zations to connect in the right way, overcome obstructions, and drive tangible business value. By being able
to quickly connect new information and operationalizing it across the entire enterprise, organizations can
increase productivity, ensure tighter security, and be able to help the organization stay competitive in their

industry.

MuleSoft's Anypoint Platform™ is a leading application network platform. It allows organizations to create
composite applications that connect apps, data, and devices through API-led connectivity to form a flexible
application network. Anypoint Platform is a single unified solution for iPaa$S and full life cycle APl manage-
ment, across both on-premises and in the cloud.

MuleSoft provides a powerful technology platform that provides enterprises with robust APl implementa-
tion solutions and strategies. Between its last major release 3.0 in 2010 and its current state, MuleSoft has
evolved a lot, from being just an Integration/API platform to something which can aid in assisting legacy
modernization, implementing secure Saa$ integrations, and providing full API life cycle management.
MuleSoft now allows organizations to implement and allow its IT Department to integrate, connect, and
build its enterprise solutions in innovative new ways. The next-gen Mule 4 platform offers a broad range of
new and improved features intended to enhance the capabilities of the platform along with developer
experience. In this whitepaper, we try to address the benefits, challenges, and best practices for organiza-

tions looking to migrate from Mule 3.0 version to Mule 4.x.

Glossary
API Application Program Interface
C4E Center for Enablement
CoE Center for Excellence
DMZ Demilitarized Zone
HA High Availability
IT Information Technology
LOB Line Of Business
PCl Payment Card Industry
RAML RESTful APl Modeling Language
SDK Software Development Kit
SOA Service Oriented Architecture

2. Why Do You Need to Migrate to Mule 4?

MuleSoft, in its journey from 3.0 to 4.x, tries to bring customers, business, and developers together, and help
them innovate possibilities. With the launch of Mule 4, MuleSoft is offering several features to make
integration easy, because of which many enterprises are already adopting Mule 4. Let's look at some of the
features that Mule 4 offers and the differences between the Mule 3 and Mule 4 releases.

Mule 4 has improved on the following fronts, compared to Mule 3:

Exception handling @ Self-tuning : Frictionless upgrades

Better application Repeatable
NG : New connectors
configurability il streaming J@OE a

Seamless access Triggers pil Enhanced enrichers
to data -

2.1 Exception Handling

Mule is a high-end middleware tool for programming — which supports flows, business logic, data types,
etc. A common gripe with the Mule 3 platform was that it had fallen short in managing Exception Handling.

Mule 4 directly handles the exception with a seamless configurable error handling mechanism.

In points:

* It projects the Java exception into Mule 4 error objects

+ Custom Error functionality can be used to differentiate errors in the application and various points
It allows mechanism to catch groups of error/exception objects together

2.2 Simplified Event Processing and Messaging

Mule 4 brings a more compact event-processing model by optimizing unwanted hierarchies and workflows.
Inbound and outbound properties are merged as attributes in Mule 4 event architecture's message section.
Unlike Mule 3, the inbound and outbound properties are combined under one section. They are used to
carry the payload's metadata information such as - any file content, query parameters, inbound properties,
outbound properties, etc.

Message handling in Mules 3 vs Mule 4 is different due to simplification of complicated message
structures. Earlier a simple transformation required a creation of java objects, etc. whereas now they

happen by default.

/ Mule 4 Event \ Mule 3 Event \

Message Message

Payload
Payload
(Includes Attachments)

Attributes -
(immutable)

[Variables] Attributes
[Exception Message] Attachments
\ / ' Attributes /

Event Models

2.3 Self-Tuning Capabilities

While the ease of implementation, look and feel, features and simplicity are important considerations,
performance and scalability are of paramount importance — regardless of the use case. Mule 4 brings in a
new approach altogether with the adoption of a reactive and non-blocking character of threads (meaning
threads will no longer wait for responses; instead they will process parallelly), which makes it scalable. In
addition to ensuring that the developers and support teams do not have to do performance tuning, the
platform has been blessed with self-tuning capabilities. Implementers will no longer need to worry about
thread pools, threading profiles, and processing strategies in order to achieve a high performing
implementation. Mule 4 can now perform self-analyses and auto-scale based on runtime condition needs.

3. When to Migrate from Mule 3 to 47

Migration of an already working implementation demands a lot of support from the senior management
and will obviously need an investment, as suggested earlier. However, when to migrate is a very vital

question.

Here is a flow chart for simplifying the decision-making:

Is there an Is the existing Are there better Does it align

upgraded version version going out
for the product? of support?

Can my cores

get optimized? features which with my future

are useful? road map?

Does the version help in doing things better
Monitoring | Governance | Maintenance

AS-IS What are

the options

Re-Architecture

Long term vision Address the short Reengineer Leverage the capabilities
comes with larger comings of current security & of latest version fully, get on
effort implementation optim ize core with best practices

Want to manage risks with
Less effort versions going out
of support

Short term Quick turn
vision around time

Decision Process

Before initiating the migration from Mule 3 to Mule 4, it is important to check if the organization is ready for
the upcoming changes. Organizations can consider below points in their decision-making process:

+ How comfortable are the IT (development and support) teams in using Mule 4?

+ Do they understand the components that have to be changed in Mule 4 in comparison to Mule 37?
(understand the difference between Mule 3 vs. Mule 4)

* What is the organization strategy to support all currently running MuleSoft versions along with Mule 4?

* Since Mule 3 and its variants’ supports are expiring in 2021, would they extend?

+ Do you want to upgrade all applications to Mule 4?

4. Methodologies for Mule 3 to Mule 4 Migration

As described earlier, Mule 4 offers several new features that can make integration easy and cost-effective.
However, just like any other migration, migrating from Mule 3 to Mule 4 has its own challenges. To assist
businesses in secured migration, we have detailed a few measures that you need to take prior to the

migration process:

4.1 Rationalization of Existing Mule 3 Implementation

For most organizations, the existing Mule 3 implementation would have matured over a period of time and
could have been customized by multiple implementers. Thus, there is often a need to rationalize the
existing integrations in order to support a smooth migration. Integration rationalization can help

organizations mature their integration landscape, and improve LOB management capabilities and delivery
of mission-critical business services. However, it requires buy-in from stakeholders across the enterprise -

including senior leaders, technical teams, LOBs, enterprise teams, etc.
The process for rationalization is shown below:

Identify and
Governance

4

* Group based on functionality Finalize scope

* Future state Identify requirements

* Device strategy Establish governance parameters
Integration
Rationalization
Process -
Finalize inventory

* Bring in scoring methodology
* Review interface scoring

* Confirm cost and distribution
» Compare Value against cost

Score
Inventory

* Suggest new ways to bring cost distribution

Business
Value

Rationalization Process

Categorize the inventory
Isolate end points

Review value & Technical Fit
Identify dependencies
Identify duplication and versions

Organizations generally face a ‘'migration bubble’, which is an increase in IT costs due to the migration.
However, migration brings long term value in the form of increased worker productivity, greater scalability
and agility, and operational resilience, which establishes a new cost baseline and results in cost savings in

the long term.

Migration Bubble

Current-state Cost

Cost

Planning | Migration | Reskilling Future-state Cost

Time

Migration Bubble

4.2 Choosing the Right Migration Options

While Center for Enablement (C4E) is the driving force for many organizations, independent LOB's may
have specific implementations with different architecture flavors, leading to multiple patterns and
localized frameworks. During the migration, customers should look at addressing these concerns in
addition to looking at deployment architecture, HA, DevOps, etc.

First things first, evaluate your business needs and road maps and consider the options of As—is migration
vs. re-architecture. The recommended approach though is mostly to re-architecture (based on factors such
as cost, time, benefits, roadmap, etc.).

As-Is Migration: this strategy involves rebuilding the application as-is on the new platform. Here,
implementation is done with none or very little modification in logic. While it is a simplistic approach to
start with As-Is migration of APIs or implementation optimization, this approach ensures to be quick and
easy, as outcomes are achieved with minimal application disruption and effort. However, the platform may
not deliver the latest features and benefits, which can lead to core optimization. Note that organizations
may leverage the MuleSoft-provided migration utility for the same too, which can help to a certain extent.

Re-Architecture: this strategy entails making major changes in the integration implementation. This is a
complex approach in comparison to As-Is migration. We need to ensure that there is no impact on external

behavior of the middleware layer while implementing changes.

For example, let us consider that different LOB’s have implemented customer information API’s. As part of
re-architecting, if the organization decides to move to API-led connectivity with experience layers for each
LOB along with few best practices and common frameworks embedded in the implementation, it may
cause a few blips in the experience. Hence, testing is mandatory and has to be conducted end-to-end.

The organization has to choose between As-Is or re-architecture, depending on the following factors.

Re-Architecture

Cost Low High
Time Low High
Version Compliance Yes No
Platform Benefits No Yes
Core Optimization No Yes
Long-term benefits No Yes
Short-term plan Yes No

Based on our experience working on Mule migration projects and the objectives achieved, the comparison
of effort vs. objectives is depicted below. Note that the graph could change based on multiple parameters,
foresight of the organization, number of applications to be migrated, maturity of the implementation, etc.
The below comparison is for organizations having a significant investment in MuleSoft over time with
multiple implementation approaches (API-led, Customizations, Central/Federated, etc.)

Production

or/Functional JAT

Effort TestingA

production

Requirement
Analysis

Level 0 testing

Bu'\\d

Current

State Objectives

Effort vs. Objective Comparison

Modern architecture sets a platform to support the future road map and should therefore be a key
consideration while migrating. A well-planned and executed integration migration will result in a modern
platform that meets business needs for agility along with objectives and produces cost savings while

aligning to the product roadmap.

0
o Message model Considerations

API .

Migration Consideration

One of the considerations as part of the migration is API-led connectivity and the identification of patterns
for implementation. We believe there are generally six patterns in a synchronous world.

- Patterns P1, P2 align to the API Led Approach

- Pattern P3 is proxy an external API
- Connecting using native protocols in P3 is an anti pattern

Pattern P4 is valid unless process needs tight security

P API .
fOCEss AFIS . Pattern P5 is not recommended unless

- Requirment needs a complex transaxtional flow
- Exception is obtained from Governance team

System APIs - Pattern P6 is valid for internal consumption
unless systems need a tight security

API Patterns

As part of refactoring and re-architecting, it would be recommended to group the integrations with similar
functionalities and fit them in one of the patterns above, thus making the implementation more

template-driven and structured.

10

4.3 Security

Security is crucial in any type of implementation. When an organization decides to migrate to a new
platform, it provides an opportunity to relook at the implementation and ensure security for applications,

data, and infrastructure. The first step is to understand where to start.

0 1 2 3
Private APIs fOAr Internal Collaboration for APIs APl Access to Identified Partners APIs are products
Internal Integration COE & Governance External Developer Access
Where does Security kick in?

Security Thought

The answer is that it kicks in right from the inception.
0 1 2 3
.) Internal Collaboration for APIs . APls as products
Private APIs for Internal Integration COE & Governance APl Access to Identified Partners L e —

Usually we think of security only here, but ...

Security issues existed from the start of the APl journey.

« Internal users = Internal teams - External partners = Public access
- Bad guys may be present anywhere (not intentional always)

- Accessible infrastructure, not only APl access

Security Understanding

There are multiple facets of APl security and it is the responsibility of the migration implementers to
understand the current implementation, identify the gaps, and address them across:

=5

Authentication &
Authorization

Monitoring Infrastructure

5. Conducting the Mule 3 to Mule 4 Migration Process

While we elaborated on methodologies of migration along with when to take the call, the part which

details how is extremely important.

5.1 Re-Architecture

Migration is a very complex process, specifically when the organization chooses the re-architecture path.

The organization not only has to rewrite the implementation, but also needs to ensure that this opportunity

that requires significant investment is not wasted.

Re-architecture provides opportunities to relook at implementation from various fronts and questions

future viability. A few aspects to consider are:

Category Description

Platform Is the API hosted on-premise or on cloud? Can it be hosted on cloud? If not, why?

APl-led Is the API/integration designed as per API-led thought process? Can they be relooked
again, as sometimes organizations would have over-engineered the implementation
and now could relook and optimize?

RAML Is there a refactoring of RAML required? Do we increase readability, implements types?

Custom Are there custom Java implementations for file handling, parsing, reading messages
from queues, backend applications, etc.? Are there Groovy Scripts? Are there any
customer components used?

Naming Are there naming standards and are the implementations following them? Did they

Conventions evolve over time and need standardization?

Logging & Are the standards and formats followed as per guidelines? Is it API kit default and do

Exception handing

you want to relook?

End Connectors

Are there any system-specific connectors? Are there any object stores used?

Reusability

Is there any scope for reusability? Are there any common processes across LOBs?

Patterns

Have you identified the patterns applicable for your organization? Are the
implementations following those patterns?

Auto Discovery

Is auto-discovery implemented?

General
Optimizations

General conditions, hard coding, certificates, removal of custom implementations with
latest platform capabilities, optimize variable usage, conversion optimization

Compliance

Does the implementation need to be compliant with PCl etc.?

Security

Is the security implemented across layers as per standards? Can someone hack, if they
pass through the DMZ?

We suggest organizations to take a two-step approach before decommissioning the existing applications

+ Foundation (Covered as Analysis and Re-Architecturé 1n the Figure Implementation Process)

* Productionized (Covered as Development and Deployment in the Figure Implementation Process)

+ Document Current Architecture

« Integration Dependency Chart

+ Code scan

- Potential Reusable Services &
Templates

+ Re-Normalization based on
v-core constraints

« Architectural suggestions

Re-Architect/
Re-Design

« Reference Architecture

» Refine & Re-define Best
practices

* Design Re-usable Services/
Components

« Show case LTIMindtree
Accelerators

* Migration Plan
(Use Case Based)

Analysis

Development

Deployment

* Apply Best Practices

+ MuleSoft migration tool to
create project templates

* peerreview

*+ Develop/Modify CI-CD scripts
+ Jenkins setup
* Deploy to higher environments

Phase 2 is multi phased based on use case and
migration plan

Migration Plan & Dependency chart

Independent use cases
(Parallel Development)

* Development

* Deployment

Use case 1

Dependent Use cases

* Development

* Deployment

Use case 4

Implementation Process

5.2 As-Is Migration

Based on your needs and time available, if you need to migrate As-Is from Mule 3 to Mule 4, it requires all

the modules to be added in the Anypoint Studio palette. The sequence to follow when migrating is as

follows:

+ Migrate Patterns .
- Migrate Message Properties -
- Migration Re-connection Strategies

* Migrate Secure Property Placeholders -
* Migrate Watermarks -
+ Migration Core Components -
- Migrate Batch Components -
- Migrate Choice Router -
- Migrate Exception Strategies to Error Handlers -
- Migrate Enrichers to Target Parameters -
- Migrate Filters -
- Migrate the 'For Each’ Component -
- Migrate Poll Component -
- Migrate Scatter-Gather Router -
- Migrate Transformers -

Migrate Connectors

Migrate Anypoint Enterprise Security (AES)
Module

Migrate to the AMQP Connector
Migrate Database Connector

Migrate Email Connector

Migrate File Connector

Migrate FTP and SFTP Connector
Migrate HTTP Connector

Migrate JMS Connector

Migrate Object Store Connector
Migrate Scripting Module

Migrate Spring Module

Migrate Validate Module

Migrate VM Module

Migrate Web Service Consumer Module
Migrate XML Module

13

* MuleSoft Connector Migration from 3 to 4
In Mule 4 the architecture for MuleSoft connector has changed completely. Connectors are developed in
Mule 3 using Dev Kit, whereas in Mule 4 they are built using Mule 4 SDK. Each processor built, is added
as a different connector (Pallet) in Anypoint Studio.

To migrate the connector to Mule 4, you can use the conversion tool to:

* In pom file Enable Connector as Mule 4 extension
* Modify package element: <packaging>mule-extension</packaging>
* Modify parent element

<parent>
<groupld>org.mule.extensions</groupld>
<artifactld>mule-modules-parent</artifactld>
<version>1.0.0</version>
</parent>

Modify the folder structure

The typical folder structure for Mule 4 is:
<Module>/api
<Module>/internal

Update annotations and Params Classes

Delete/Add/Update Classes based on Mule 4 SDK (Please refer Java Docs)

Additionally, the below parameters need to be considered for Mule 4 migration.

Auto Discovery
DataWeave Header Content

Standardize RAML Template

5.3 Leverage Testing and DevOps framework

Most of the Mule 3.X implementation would have DevOps and Testing frameworks in place. Few of the

good things that can be reused in a MuleSoft 3.X to 4.X migration are:

* DevOps frameworks with minor enhancements

» Testing framework, if built using tools (not Munit)

DevOps implementation will need changes in few places like the polling directory, project structures, and
scripts, while the configuration for the DevOps pipelines may change. Probably this could be a good time
to see if there are any changes needed in the overall pipeline and approval process aligning to the

organization roadmap.

Automated testing, if developed using Munit, cannot be reused. Only if the test cases are developed using
tools such as Postman or SOAPUI projects (assuming that the API contracts/Definitions/Schema have not
changed) it can be reused.

6. Conclusion

At a time when the migration from MuleSoft 3 to 4 is imminent, you only have two options. Hence, sitting
on the sidelines is no longer an option. Organizations need to ensure that the continuity of the services is
essential, costs are lower, and the need for migration is considered as an opportunity towards ensuring
long-term benefits. Based on the options available, we have created a model that can provide

organizations the means to take the optimized and safest path towards the latest MuleSoft 4 platform.

For more details, contact us.

7. Reference

« https://docs.MuleSoft.com/mule-runtime/4.2/intro-overview

- https://docs.MuleSoft.com/mule-runtime/4.1/migration-cheat-sheet

« https://docs.MuleSoft.com/mule-runtime/4.1/mule-runtime-updates

- https://www.mulesoft.com/press-center/network-graph-machine-learning

8. About the Authors

Srinivas Kanduri has about 19+ years' experience working as Program Architect at LTIMindtree Digital
practice, specializing on enterprise application integration. Experience in major integration technologies like
MuleSoft, TIBCO, and Software AG WebMethods. TOGAF 9.1 Certified enterprise Architect providing
Enterprise Digital Transformation consulting, Architecture Consulting, Solution architecture, technology
consulting, and leadership for technology groups within organization and IT strategy for client organizations.

Vijay Chakka possesses close to 17+ years of IT industry experience, primarily in the integration space, and
engaged in consulting, managing delivery,and practice leads. Currently, he heads the ‘Mulesoft CoE" within

the Enterprise Application Integration service line under LTIMindtree Digital. He has been part of the growth
path for multiple organizations across industries such as banking, entertainment, energy, manufacturing etc.

Surendra Thekkatte is a CoE head within Enterprise Application Integration service line under LTIMindtree
Digital practice with over 22+ years of experience specializing in Integration and Architecture consulting
offerings from LTIMindtree, helping customers defining API Strategy, setting up of API CoE, and implementation
roadmap for customers transitioning from SOA centric middleware products to Microservices based
architecture involving APl management platforms.

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business models, accelerate
innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700 clients, LTIMindtree brings extensive
domain and technology expertise to help drive superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered
by 84,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree —a Larsen & Toubro Group company — combines the
industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the most complex business challenges and delivering

transformation at scale. For more information, please visit https://www.ltimindtree.com/

