&p LTIMindtree

- WHITEPAPER
Rethinking SAS Modernization

An Al-Driven Blueprint for Modernizing
Legacy SAS Workloads

Astructured, multi-agent framework that automates SAS-to-PySpark transformation, preserving business

logic, reducing migration risks, and accelerating cloud adoption while cutting operational costs.

Ramesh Vanteru
Principal & Head of SAS COE, LTIMindtree

Table of contents

Executive Summary

Why Does It Matter to Modernize Legacy SAS Workloads

The Challenges of Legacy SAS Codebases

Beyond Manual Rewrites: An Al-Driven, Multi-Agent Approach

Design principles and architecture
Key Features and Benefits of the Architecture

Practical Benefits for Enterprises

Use Cases

Scintilla.Al: From Principle to Platform
Conclusion

References

Author’s Profile

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

o
~

=
oS o

&p LTIMindtree

Executive Summary

This whitepaper is designed for ClOs, CTOs, data modernization leaders, and
analytics heads grappling with the challenges of moving from legacy SAS systems
to modern, cloud-native architectures. It offers a clear, actionable blueprint for
organizations seeking to accelerate modernization without losing critical business
logic or high operational risks.

Modern enterprises face mounting pressure to modernize data ecosystems and
adopt cloud-native technologies. Yet, legacy SAS systems, long the backbone of
data analytics, often stand in the way. These systems are costly, cloud-incompatible,
and operationally rigid, locking critical business logic into proprietary frameworks.
If you're still relying on SAS, you must recognize the operational risks, rising costs,
and competitive disadvantages this creates. Manual migration to open-source
alternatives like PySpark is possible, but it’s slow, error-prone, and unsustainable

at enterprise scale.

This whitepaper explores an Al-driven, multi-agent approach's architectural and
methodological foundations to automate SAS-to-PySpark transformation. You'll
see why traditional approaches fall short, how a modular migration framework
addresses these gaps, and the practical benefits: cost reduction, risk mitigation,
and faster time-to-cloud.

Real-world use cases illustrate how this approach aligns with enterprise
modernization strategies while preserving decades of embedded business
knowledge. Finally, we introduce Scintilla.Al, a next-generation platform built
on these principles, and explore its role in helping organizations bridge the gap
between legacy SAS systems and modern data architectures.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

Why Does It Matter to Modernize
Legacy SAS Workloads

Modernizing legacy data systems is more urgent than ever in an era of real-time analytics, Al-driven insights, and

scalable cloud architectures.

Over decades, organizations across sectors, from financial services to healthcare, have invested heavily in SAS for data

processing, reporting, and advanced analytics.

While SAS has historically offered reliability and statistical depth, it now represents an increasingly costly and inflexible

foundation for modern data strategies.

Several structural challenges underline the urgency:

1. Cloud-native architectures thrive on elasticity, distributed processing, and integration with open-source
ecosystems. Traditional SAS workloads are primarily built for on-premises environments and are only compatible
with cloud-native pipelines

2. Cost pressures are intensifying, as proprietary licensing models scale poorly with growing data volumes and
user demands

3. Talent pipelines are shifting away from proprietary languages toward Python, Spark, and related tools, creating
operational risk

4. Competitive pressure requires data teams to iterate quickly, experiment, and deploy machine learning models,
tasks better suited to open, modular platforms

Yet the transition from SAS to PySpark or other modern frameworks is not trivial. Many enterprises have accumulated
thousands or millions of lines of SAS code, deeply intertwined with business processes and domain-specific rules.

Rewriting this code manually can take years, drain budgets, and introduce substantial risk.
The question is not whether to modernize but how. This paper also argues that the answer lies in a structured, Al-driven

approach that treats migration as a modular, explainable process that combines semantic parsing, LLM-based

translation, automated validation, and iterative improvement.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

The Challenges of Legacy SAS Codebases

Before modernizing, you must understand why legacy SAS environments are so complex to replace. These challenges

create a bottleneck for innovation and increase operational overheads.

Challenges in SAS Modernization

High Licensing Cost

Proprietary, capacity-based fees that
escalate unpredictably with growth

Limited native integration with AWS, <+
Azure, and other modern platforms
Talent Shortage
Shrinking pool of skilled SAS
developers; rising hiring costs
Manual Migration Risk
Time-consuming, error-prone rewrites
with high validation overhead

Figure 1: Key challenges of SAS modernization

1. High licensing cost

SAS is a proprietary software with substantial licensing fees, contributing to high operational expenditures for
organizations. These costs are often tiered based on processing capacity, data volume, and the number of users.

As an organization's data footprint and analytical needs grow, these costs can escalate dramatically and
unpredictably. This creates a recurring financial burden that detracts from investments in other strategic areas like

cloud infrastructure or advanced analytics tools.

Furthermore, licensing models can be rigid, making it difficult for organizations to scale up or down dynamically
based on demand, a key advantage of cloud computing.

©LTIMindtree | Privileged and Confidential

2,

&p LTIMindtree

Cloud lockout

SAS lacks native and seamless integration with leading cloud platforms such as Amazon Web Services (AWS),
Microsoft Azure, or Databricks.

While some workarounds exist, they are often cumbersome and inefficient and fail to leverage the true elasticity
and cost-effectiveness of cloud-native data processing environments.

Talent Shortage

The demographic trend indicates a diminishing pool of skilled SAS developers. As older generations of
highly experienced SAS programmers retire, finding and retaining talent proficient in legacy SAS becomes
increasingly tricky.

Universities and training programs are shifting their focus towards open-source technologies like Python,
R, and Spark, decreasing the supply of new SAS talent.

This scarcity drives up recruitment costs, prolongs project timelines, and creates a significant knowledge
transfer challenge for organizations relying heavily on SAS. The long-term sustainability of SAS-based operations
is therefore at risk.

Manual Migration Risk

Rewriting extensive SAS codebases to PySpark manually is inherently labour-intensive, highly susceptible
to human error, and exceptionally challenging to validate comprehensively. A single complex SAS program
can span thousands of lines, incorporating intricate data transformations, complex business rules, and
statistical procedures.

Manual conversion of such code introduces numerous opportunities for logical inconsistencies, syntax errors,
and subtle deviations from the original business logic, which can lead to erroneous analytical results or
operational failures.

This approach often results in lengthy project timelines, significant budget overruns, and the potential
introduction of bugs or logical inconsistencies that are costly and time-consuming to identify and rectify.

To overcome these multifaceted challenges, an intelligent and automated framework is urgently needed to handle this

transformation at scale while preserving intricate business logic and ensuring data integrity.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

Beyond Manual Rewrites:
An Al-Driven, Multi-Agent Approach

Modernizing legacy SAS code does not have to mean starting from scratch. An emerging alternative reframes migration

as a structured, Al-enabled process built around four key architectural layers:

0l 02 03 04 05

| Parsing | Semantic | Automated | Feedback-driv | Optimizing
E and i translation E validation i en refinement E code to
| structuring | into modern | toensure | toimprove | increase
; the legacy code : frameworks : correctness : over time : efficiency
Each layer corresponds to specialized "agents" within the framework. Let’s examine these in detail.
The Parse Agent: creating semantic structure
Before code can be translated, it must be understood. The Parse Agent acts like a compiler’s front-end:
1. Tokenization 2. Logical segmentation
Breaking raw SAS code into discrete elements: Recognizing structural constructs (DATA steps,
keywords, variables, literals, and operators PROC statements, MACRO definitions)
3. Metadata extraction 4. Comment preservation
Identifying data lineage: input datasets, Retaining human explanations for
output targets, join keys, filter conditions downstream documentation

By converting free-form SAS code into a structured intermediate representation (IR), the Parse Agent provides
downstream agents with the semantic context needed for accurate translation.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

Large Language Models (LLMs) excel at pattern recognition, cross-language translation, and understanding semantic
intent. In this layer:

1. The LLM Rule Agent uses carefully engineered prompts to instruct the model on converting SAS constructs into
idiomatic PySpark equivalents

2. Prompts embed domain knowledge (e.g., mapping PROC SQL joins to PySpark DataFrame APIs)

3. ThelLLM operates as an "expert programmer" capable of translating data steps, statistical procedures, and
transformation logic while retaining business intent

The agent employs fallback strategies for highly complex or ambiguous code blocks: wrapping code in spark.sql()
constructs for human review, ensuring no logic is lost.

The Validation Agent: programmatic quality control

Even expert-generated code requires review. The Validation Agent automates this:

1. Completeness checks 2. Structural integrity
Verifying all transformations from the Parse Agent Catching syntax errors, missing parentheses,
are represented in the PySpark code orinvalid DataFrame operations

3. Semantic checks

Confirming that filter conditions, joins, and
aggregations preserve original intent

This agent drastically reduces manual testing effort and ensures a consistent migration baseline.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

No Al system is perfect on the first pass. The Feedback Agent introduces retry logic and iterative refinement:

« Logs errors from the Validation Agent
« Adjusts prompts or adds context before re-invoking the LLM Rule Agent
« Continues until code passes validation or flags it for human review

Over time, this feedback loop helps the system adapt to organization-specific coding styles and business logic nuances.

The Optimize Agent: serving output code

Finally, when the chunks of code are validated completely, the Optimize Agent merges the chunks in order, enhancing
code performance and efficiency, reducing redundancies and improving execution.

« Merges chunks of code received from Validation and Feedback agents

« Executes the predefined prompt to optimize the merged code to enhance efficiency and improve execution

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

Design principles and architecture

A multi-agent system for SAS modernization must be designed to handle large-scale code migrations efficiently, adapt

to evolving requirements, and provide clear, explainable outputs for compliance and audit readiness.

Layer Technology
Frontend React.js, Material Ul, Toastify, Framer Motion
Backend FastAPI, Python, LangChain
Agents Modular Python Classes with Defined Triggers
LLMs OpenAl GPT (via Azure), Google Gemini (via LangChain)
Execution Uvicorn, pip, npm, venv

Key Features and Benefits of the Architecture:

1. Parse+LLM Combo

This combination is fundamental. It enables structured migration, moving beyond raw text conversion to
semantic understanding.

The Parse Agent ensures that the LLM is not just guessing at translations but working with a semantically rich
representation of the SAS code, leading to more accurate, reliable, and contextually appropriate PySpark output.

This avoids the pitfalls of simple rule-based or regex-based conversions, which lack proper understanding.

2. Modular Agents

The clear separation of responsibilities among Parse, LLM Rule, Validation, and Feedback Agents facilitates easy
debugging, extension, and scaling of the migration process.

©LTIMindtree | Privileged and Confidential

10

©LTIMindtree | Privileged and Confidentia

&p LTIMindtree

The Parse Agent can be updated to support a new SAS PROC statement. The LLM Rule Agent's prompts can be
refined if the LLM's translation quality needs improvement for a specific pattern.

Debugging an issue becomes a process of isolating the problematic agent rather than sifting through a
monolithic codebase. New agents can also be introduced for future enhancements, such as optimization

or performance tuning.

Automated Validation

The Validation Agent significantly reduces the need for time-consuming and error-prone manual code review.

By programmatically checking for completeness, structural integrity, and basic semantic correctness, it catches
common mistakes early in the process, freeing human experts to focus on more complex business logic validation
and edge cases. This dramatically accelerates the overall migration timeline.

Retry and Feedback Loops

This intelligent mechanism allows the system to auto-correct errors and improve output using validation logs.
It creates a self-healing system that learns from its failures.

This iterative refinement minimizes human intervention for standard translation issues and enhances the overall
robustness and accuracy of the generated PySpark code over time. It's a continuous improvement cycle
embedded directly into the migration process.

11

&p LTIMindtree

Practical Benefits for Enterprises

An Al-driven, multi-agent migration framework offers more than speed. It changes modernization's economics and

risk profile.
01 02
Cost savings Faster cloud adoption

Lower SAS license fees, reduced Modern code integrates natively
with platforms like Databricks, AWS

Glue, or Azure Synapse

manual engineering effort, and

better use of cloud-native compute

03 04

Improved agility Risk reduction

Teams can iterate on PySpark pipelines, Automated validation minimizes silent

integrate ML frameworks, and deploy data corruption and reduces dependence

new data products faster on scarce SAS specialists

05

Business logic preservation

Semantic parsing ensures decades of embedded rules are migrated, not discarded.

Use Cases

Real-world applications illustrate why this approach matters:

Enterprise SAS decommissioning

Large organizations often aim to retire SAS systems to reduce cost and complexity. Al-driven migration enables a
phased approach, converting pipelines incrementally and validating outputs, rather than a risky “big bang” rewrite.

©LTIMindtree | Privileged and Confidential

&p LTIMindtree

Many data workloads remain on-premises because SAS code is complex to migrate. Automated translation
into PySpark unlocks native execution in cloud platforms, improving scalability and cutting infrastructure
management costs.

Al/ML enablement

SAS pipelines often include feature engineering steps vital for machine learning. Translating them into PySpark allows
direct integration with TensorFlow, PyTorch, or scikit-learn, accelerating model development.

Data modernization consultancies can use Al-powered tools to scan client SAS codebases, propose migration
plans, and automate first drafts, reducing delivery timelines and costs while focusing human expertise on complex
edge cases.

Scintilla.Al: From Principle to Platform

LTIMindtree’s Scintilla.Al embodies these architectural and methodological principles in a production-ready platform.

Built as a modular multi-agent system, Scintilla.Al automates SAS-to-PySpark migration by combining parsing,

LLM-driven translation, validation, and feedback-driven refinement.

The platform preserves business logic, ensures code quality, and scales across thousands of legacy scripts.

©LTIMindtree | Privileged and Confidential

13

Key capabilities include:
1. Asemantic parsing engine that transforms raw code into structured representations
2. Context-aware translation using leading LLMs, guided by tailored prompts
3. Automated validation to catch syntax and semantic issues early

4. Feedback loops that iteratively refine output with minimal human intervention

Scintilla.Al helps enterprises reduce operational risk, cut costs, and accelerate cloud modernization strategies by

turning complex, error-prone migration into a repeatable, explainable process.

Conclusion

Modernizing legacy SAS systems is not simply a technical upgrade; it’s a strategic move toward agility, scalability, and

competitive differentiation. Yet manual rewrites are rarely feasible at enterprise scale.

Astructured, Al-driven, multi-agent approach offers a realistic path forward: it preserves historical business logic,

improves accuracy, and delivers faster time-to-cloud.

Platforms like Scintilla.Al operationalize these principles, transforming modernization from a high-risk, multi-year effort

into an incremental, automated process.

As organizations look to unlock new value from data, Al-powered automation stands out as an enabler of

transformation in the cloud-native era.

©LTIMindtree | Privileged and Confidential

14

&p LTIMindtree

Al Agents: Mastering Agentic RAG - Part 5, Shivam Goyal,Microsoft Educator Developer Blog, March 31, 2025

Fully managed Retrieval Augmented Generation options, AWS:

Ramesh Vanteru
Principal & Head of SAS COE, LTIMindtree

Ramesh is a SAS subject matter expert with nearly twenty years of experience in
designing and developing data and SAS analytical applications. He is SAS Advanced
Certified and a Snowflake SnowPro Certified Architect, offering technical advice on

building SAS and Snowflake data platforms with extensive expertise in consulting,
taxation, BFSI, healthcare, and cloud data platform implementation.

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine

ousiness mode cele on, and maximize th by sing digital tec 5. As a digital transformation partner to more
i i i ior competitive differentiati stome

es, and business outcomesinaco gworld. Pow o)y talented and entrepreneurial professionals across more than

untries, LTIMindtree — a Larsen & Toubro Group company — solves the most complex business challenges and delivers transformation

at scale. For more information, please visit https://www.ltimindtree.com/

